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Figure 1: General sampled data system

1 MARSYAS Overview

MARSYAS is a computer-aided control system design package for the simulation and analysis of open loop

and closed loop dynamic systems. Prior to the summer of 1991, MARSYAS functios provided simulation

of sampled data (mixed discrete-time and continuous-time) systems; however, sampled-data system analysis

of stability, frequency response and transfer function coefficients was not implemented. Analysis of purely

continuous-time systems was available, but the underlying computational procedures did not employ several

recent advances in numerical techniques.

This report outlines the numerical and theoreti_cal basis behind the MARSYAS functions developed
during the summer of 1991. In particular, the numerical computation of the matrix exponential eA =

A 2 A s

I + A + _ + _ + ... as described in [11] and the numerical computation of the finite system zeros of

a dynamic system (continuous-time or discrete-time) as discussed in [4], [6], and [8] are presented. These
two numerical functions and their associated numerical tests comprise the bulk of the work done by the

author while working in tandem with John Tiller (BCSS) and D. Pat Vallely (NASA-MSFC). The analysis

of sampled-data systems is discussed in Section 2; the numerical computation of system zeros is discussed in
Section 3.

v

2 Discretization of LTI Continuous Systems

A general sampled-data system is shown in Figure 1. The system has an external continuous-time input

r¢(t) and an external discrete-time input rd(t), and maps these signals to continuous-time outputs y¢(t)

and to discrete-time ouputs u¢(t). Due to the use of A/D and D/A converters, sampled-data systems are

nonlinear and time-varying in general. That is, there is no transfer function from re(t) to y¢(t), even if the

constituent subsystems are linear and time-invariant (LTI)! However if the subsystems are LTI, the behavior

of the A/D and D/A converters (u_(t) = ud(kT), t E [kT, kT + T)) implies that one may obtain discrete-

time transfer functions Yd(z)/Rd(z) and Ud(z)/Rd(z)- This is accomplished by computing matrices F and
G such that a continuous time system _ = Ax + Bu may be equivalently represented at sampling times

O, T,..., kT,.., as x(kT + T) = Fx(kT) + Gu(kT). This conversion is obtained via the relations F = e AT

, G=(/T eA(T-t)dt) B'wherethematrixexp°nentialeaTisdefinedaseATA= I + AT + (AT)2�2' +., ..

,])Van Loan [10] observes that F and G may be simultaneously computed as 0 I 0 0 ;

that is, only a single matrix exponential is required.
Computation of the matrix exponential is not a trivial task. (See, for example, [7].) However, Ward

[11] has proposed the use of Pad_ approximations with preconditioning for this purpose. The algorithm is

shown in Figure 2. This procedure was tested at MSFC during the summer of 1991 in several numerical
experiments; computed eigenvalues of F = e A were compared with the exponentials of the eigenvalues of
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Figure 2: Computation of the matrix exponential

A, with good agreement. Similarly, matrices A = VAV -1 were constructed so that computed values of F

could be compared with exact (known) solution values, again with good agreement. Experiment models
had up to 109 states with wide variation in coefficients. Little difference was found between using 3rd order

Pad6 approximations and eigth order Pad6 approximations; hence, for the sake of computational speed,
MARSYAS presently uses 3rd order approximations.

3 Factored  ansfer Functions -

Numerical experiments involving discretized sampled-data systems with fast modes revealed that existing

MARSYAS software was not adequate for the computation of associated system z_eros. Prior to the summer

of 1991, MARSYAS computed the zeros of H(s) = C(sI - A)-IB + D as

-oJ 0j)Zi -- l[1 C D 0 0

Unfortunately, discretizcd systems obtained from continuous time systems with fast modes (relative to the

[-A -B] is nearly singular. ::sampling interval) are nearly uncontrollable; that is, the matrix C D

EISPACK routine balanc [9] and Ward's GEP balancing procedure [12] attempt to reduce the dynamic

range of the coefficients in the algebraic eigenvalue problem (AEP) and the generalized eigenvalue problem

(GEP), respectively, without introducing any roundoff error. Both of these procedures may be divided into

two steps: (1) permutation and (2) scaling.

For example, the permutation step gep_perta of Ward's balancing procedure computes permutation ma-

trices P1 and P2 such that the transformed matrix pencil

(]_I - AIQ) = PI(M -- )_N)P2

may be conformably partitioned as M = 0 _/'22 /12/23 and N = 0 /V22 /'_/23 where /_11,

0 0 0 0
/_/'11, _'_33 and Ar33 are upper triangular and h7/22 and N2_ form a reduced order permutation-irreducible

GEP. Following gep_psrm, the scaling step gep_scale of Ward's balancing procedure computes diagonal
.. . k (i) k{i)x

matrices Di = dlag(r , ,..., r - ), i = 1, 2, where r is the machine radix. Dl and D2 are selected so that
the elements of the-rnatrlx products Dj MD2 and Dj ND2 are of approximately the same magnitude. (The

use of powers of the machine radix r allows these matrix products to be computed without roundoff.)

The AEP balancing procedure balan¢ may be similarly divided into a permutation step aep_perra
and scaling step aep_scale. Ilowever, balanc requires that P1 = P2 -1 = P2 v and D2 = D1 -l =

diag(r-k_'),...,r-_(2)). The use of similarity transforms /91 and D1 preserves the N -- I structure of

the AEP.
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EISPACK none

ENVD
EISPACK

Algorithm Preconditioning
ENVD none

zgep_scale

gep_perm, gep_scale

Computed Zeros

-1904,(-1500 ±j8.744.104),-336.2,0,0

-5.468.105,(2.688 ± j4.720)-105,

(9.913 ±j9.359).10_,-1500,-1500

-1500,-1500

1500 ± j2.7847.10 -5

Figure 3: Numerical results for Example 3.1.

Since Ward has developed an effective preconditioner for the generalized eigenvalue problem [12], it

was decided to modify MARSYAS to use this balancing procedure in tandem with the QZ iteration [8] as

implemented in EISPACK. This procedure resulted in great improvement in the accuracy of MARSYAS

computed results. Ward's balancing procedure may be applied without roundoff error and will usually

provide improvement in the computed results. However, the QZ iteration fails to isolate zeros at infinity,

and so these zeros may be perturbed in the Riemann sphere to large (but finite) zeros of arbitrary phase.

Emami-Naeini and Van Dooren [4] propose a procedure for the solution of the zero-computation gener-

alized eigenvalue problem that reduces the original problem to one of lower degree that has the same finite
zeros as the original system but with no zeros at infinity. This code has been tested on several industrial

system models with great success. However, implementation of this algorithm (as available from netlib
at Oak Ridge National Labs) proved disastrous when applied to a model of the oxidzer-preburner valve

dynamics of the SSME. This failure was due to widely varying magnitudes in the coefficients in the system
model. As a part of the 1991 summer faculty program, a new balancing procedure for the zero-computation

generalized eigenvalue problem

[,0]C D z=_ 0 0 z

was developed as a preconditioner to the Emami-Naeini/Van Dooren algorithm; see [6] for details. Use of

this procedure in tandem with modified procedures from [12] and EISPACK provides improved numerical

robustness as shown in the following example.

Example 3.1 Consider the following seventh order single-input, single-output dynamic system based upon

the space shuttle main engine oxidizer-preburner valve dynamics. The system coefficients are ali = -7000,

a12 : --2.5 X 10 7, a17 -- -1.82943 x 109, a21 = 1, a32 = 6.4 x 10 s, a33 ---- --2,240, a34 -- --a32, a43 -- 1,

as4 = 9.03934, a6s = 225,449, a66 = -3,000,asT = -2.25 x 106 , aT6 = 1, bll = 1.44813 x 108, els =

1.26582, and all other matrix entries are zero. The EISPACK implementation of the QZ algorithm and the

Emami-Naeini/Van Dooren (ENVD) algorithm were applied to this system with either no preconditioning,

Ward's balancing procedure gep_perm, gep_scale, or the zero-computation generalized eigenvalue balancing

procedure zgep_scale. A summary of the numerical results is in Figure 3. (Ward's balancing procedure

[12] correctly isolates six generalized eigenvalues at infinity; the correct finite system zeros are s = 1500 ±

j2.7847 x 10 -s. The zgep scale scaled system coefficients are axl = -7000, a12 = -762.9, ax7 = -1744.7,

a21 = 32,768, a32 : 78.125, a33 -- -2240, as4 = -156.25, a43 "- 4096, as4 = 72.31472, as5 = 27.52,

a66 = -3000, a67 = -34.33, av6 = 65,536, bll = 1.0789 and c15 = 0.6329.
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